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tion causes mass flow in the wetted wick, that, in turn dis- 
torts the shape of the meniscus. This effect should be of 
second-order nature but is difficult to estimate quantitatively. 
Evaporation also introduces a dynamic pressure difference 
across the liquid-vapor interface, but this difference can be 
shown to be always negligible as compared to the static 
pressure difference. This is further confirmed by the success- 
ful correlation of the data of Freon 11, which were obtained 
under intense evaporation conditions at room temperature. 
Another possible effect is that of the contact angle. That 
this effect is negligible as implied in the present correlation 
can be explained through the physical model for screen 
wicks shown in Fig. 1. Each meniscus is tangent to its 
adjacent ones at the instant of rupture. The surface tension 
force at the tangent point acts vertically upward and is 
balanced by the downward pull of the liquid column. This 
model is analogous to thai of the ring method for surface 
tension measurements [12], in which the dependence on 
contact angle was found to be indeed small [12, 131. 
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NOMENCLATURE c, 
a, sound speed ; 
A, total cross-sectional area normal to the streamwise k, 

direction ; L 
4 cross-sectional area of pore space normal to the L max 

streamwise direction ; M, 

constant related to losses due to separation and 
turbulence ; 
permeability ; 
length of porous material ; 
length of porous material required for choking; 
Mach number, u/a; 
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m, mass flow rate ; 

P. static pressure ; 
R, irreversible flow resistance ; 
Re, Reynolds number, pV’Jk/P : 
‘I: absolute temperature ; 
u, mean pore velocity : 
K mean filter velocity (Darcy velocity) ; 
X, streamwise coordinate. 

Greek symbols 

Ys ratio of specific heats; 
s, porosity ; 
IA viscosity ; 

P. density. 

INTRODUCTION 

THERE exists an extensive literature on the flow of fluids 
through porous materials, most of which is concerned with 
incompressible, inertia-free flows (e.g. [l, 21). Little atten- 
tion has been given to compressible gas flows through 
porous materials at velocities which are sufficiently high to 
cause significant effects of inertia. An important contribu- 
tion to this problem area has been made by Emanuel and 
Jones [3], who developed a one-dimensional theory for 
compressible adiabatic flow of a perfect gas through a 
porous medium. The objective of the present work is to 
extend and generalize the analysis of the problem treated by 
Emanuel and Jones. 

A schematic diagram of the physical system is given in 
the inset of Fig 1. Stations 1 and 4 correspond, respectively, 
to locations immediately upstream and downstream of the 
porous material. Station 2 lies within the porous material, 
just downstream of the front face, and between 1 and 2 the 
flow adjusts to accommodate the change in the open cross- 
sectional area. Similarly, station 3 is situated just within the 
porous material, at its downstream end. The distance 
between stations 1 and 2 and between stations 3 and 4 will 
usually be of the order of a few pore diameters and will thus 
be negligible compared with the overall length of the 
material. Consequently, distances in the streamwise direc- 
tion can be measured without ambiguity from the front 
face of the material. The foregoing notation is the same as 
that of [3]. The porous material is taken to be homogeneous 
and isotropic. 

FLOW WITm THE POROUS MATERIAL 

The flow within the porous material between stations 2 
and 3 is now considered. For a one-dimensional model, the 
relevant conservation equations may be written as 

pu duldx = - dP/dx - R (1) 

CPT+ udu = 0 (2) 

d(pu) = 0. (3) 

The quantity u is the mean fiuid velocity through the pore 
space at any cross section and is given by 

u = +$?A, (4) 

where A, the cross-sectional area of the pore space, is 
assumed to be independent of the axial coordinate x. The 
resistance R appearing in equation (1) characterizes the 
irreversibihties experienced by the flow as it passes through 
the porous material (i.e. the flow is not isentropic). The 
energy equation (2) corresponds to negligible heat transfer 
at the outer bounding walls of the porous material. 

O! 02 03 04 05 0,6 0.7 

FIG. 1. Axial length of porous material for choking, Re = 100. 

To proceed, it is necessary to specify the resistance R. 

Recent experiments [Q?J involving liquid flows in porous 
materials have shown that R can be very well described by 

R = PVJk + cpV’/Jk. (51 

Here, I/ is a superficial velocity (Darcy velocity) defined by 

V = rCl/pA (6) 

in which A is the total cross-sectional area normal to the 
flow. Although equation (5) was deduced from incom- 
pressible flow experiments, there is ample precedent ([73 
p. 184) to support its application to subsonic compressible 
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flows. In equation(S), k is the permeability aud c is a constant 
that depends on the particular class of porous materials 
under consideration. The fii term appearing an the right- 
hand side represents the viscous resistance (Dar&y resistance) 
ehara&&ing a huninar inertia-free flow. The second term 
an the right takes account of losses due to separation and 
turbulence. 

For a porous material in which the pore space is iso- 
tropically and randomly distributed the fractional pore 
volume in any layer of infinitesimal thickness dx is equal to 
the fractional pore area [l]. Le. E = A&4, where E is the 
porosity. Then, if the density p which occurs in the de&&g 
equation (6) for the Darcy velocity is taken to be the local 
gas density as it appears in equations (I), (3) and (4) it 
follows at once that 

V = &Xl. (7) 

The su~titu~o~ of equations (7) and (ii) into equation (1) 
yields 

which, aside from the quadratic resistance term, has the 
same form as the momentum equation of Wankat and 
gchowaher [g]. In cormection with equation (8), it is 
r&Xant to note that, for porous material% smaii E usually 
implies small k. 

Then, equation (8) may be recast into dimensionless form, 
witb the result 

The Reynakis number defined by equation (IO) has been 
previously employed in correlating jn~rn~~ib~ pressure 

drop data for porous media [4&J. It is appropriate to 
discuss the components l/Re and c which make up the 
dimensionless form of the resistance law (l/Re + c) appear- 
ing in equation (9). Only when l/Re 9 e BTO the irrever- 
sibilities limited to the viscous fesses of a Darcy flow. 
Otherwise, both components of the resistance law must be 
accounted for. Thus far, c vahres varying from approxi- 
mately a075 to @5 have been measured [4-6]. Therefore, 
in some cases, significant departures (>, 2 per cent) from 
the Darcy resistance occur at Reynolds numbers as low as 
004, 

Next, by making use of equations (2) and (3) in conjunc- 
tion with the perfect gas law* equation (9) can be reduced to 
a di%rentiaS equation relating the Ma& number M and 
the dimensionless axial position x/Jk. Upon integration 
from x = 0, where the Mach number is Ma, to any axial 

station x/,/k with Mach number IU, there is obtained 

Zs’(l/Re + c)x/Jk = F(M-$) - F(M’) (11) 

WhtX@ 

F(l!f2)=-& - ( >[ ‘+l In 
IV 

2Y 1 f (y - 1 1)@/2 
. w 

Equation (11) may be employe4i to specify the axial 
length &of porous mate&I required to produce choking 
of the flow at station 3 (i.e. LUG = 1). The result is 

where 

It will be observed that G(M$ is numerically equal to the 
function 4fL,_/D far adiabatic flow with friction in a con- 
stant area duct [7], As prescribable parameters, equations 
(11) and (13) contain the material constants k, E and c. the 
specific heat ratio 7, the Reynolds number Re, and the 
initial Mach number M,. 

To illustrate the nature of the results, Figs. 1-3 present 
L,,,J,/k as a function of M2 for Reynolds numbers of lf@l 
XII and @l respectively (y = 1.4). Each figure contains 
curves for E values of 05, @75 and 1.0 with two values of c 
(05 and 005) used at each E The presentation is limited to 
t_/Jk 3 IO, this limit being selected both from the 
standpoint of practicality of fabrication and to insure the 
validity of the analytical model. 

When the flow Reynolds numbeh is as high as 100, the 
viscous (Darcy) resistance (- l/Re) is completely over- 
whelmed by the inertial resistance (WC). Consequently, 
L,,$Jk is approximately inversely proportional to c for 
given values of M, and E [equation (13)]. This trend is 
evident in Fig. 1. Furthermore, as expected, L_decreases 
as the initial Mach number M, increases, At a Reynolds 
number of I.0 (Fig. Z), the viscous and inertial resistances 
may be of approximately the same magnitude, and the 
latter plays a lesser role than in the results of Fig. 1. A 
further point to observe from Fig. 2 is the considerably 
reduced range of allowable v;tfues of M, consistent with 
~~=~~k~ > 10. 

Finally, when the Reynolds number is as low as O-I, the 

hP.7 resistance predominates and c has only a minor 
effect in the calculation of L,.J Jk. This is indicated in Fig, 
3, where the curves are seen to group according to the values 
of the porosity. Again, the range of allowable values of Mu 
is further reduced. 

FL0W Mnt THE PURUIJS MATERIAL 
When the fluid enters the front face of the porous material, 

it experiences a sudden change in flow area. Emanuel and 



1858 SHORTER COMMUNICATIONS 

Jones [3] discussed the importance of including this 
entrance effect in the complete analysis of the flow through 
the porous material. Numerical results for the M,. M, 
relation are presented here. 

16 
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FIG. 2. Axial length of porous material for choking, Re = I4l. 

In [3], it was assumed that the flow between stations 1 
and 2 is analogous to that in a converging nozzle, with the 
flow undergoing an isentropic change. The Mach numbers 
at 1 and 2 are then related by the expression 

This relationship has been evaluated for several values of 
the porosity and the results are plotted in Fig. 4. This figure 
demonstrates that for intermediate and small porosities. 
M, may be appreciably less than M,. This characteristic, 
taken together with the aforementioned limitations on M,, 
may impose important restrictions on the allowable values 
of Mr. 
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FIG. 3. Axial length of porous material for choking, Re = 0.1 
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of the porous material. 
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INTRODUCTION 

SUBSTANTIAL impetus has been given to the numerical 
solution of two-dimensional boundary layer flows by the 
work of Pataakar and Spalding [l, 21. The primary contri- 
bution consists of a coordinate transformation (hereafter, 
the “o-transformation”) from the physical variables (x, y) 
to variables (x, w), where 

and the subscripts I and E denote, respectively, the inner 
and outer edges of the boundary layer. Use of the non- 
dimensional stream function o as the cross-stream variable 
confines the boundary layer to the rectangular region 
x > 0, 0 < o C 1. This fact coupled with a working ex- 
pressio&for mass entrainment, d+ddx, results in efficient 
utilization of the grid network in a finite difference solution. 

The present authors have encountered some unexpectedly 
large errors in results obtained with this formulation, 
particularly when finite difference analogues of the govern- 
ing differential equations are derived from Taylor series 

expansions. This is the result of inherent inaccuracies in 
finite difference approximations in the near wall region since 

au/am = &A2 _ A*au 
ay a. PU ai (2) 

and all higher derivatives of u with respect to w, become 
infinite as y -+ 0. The resulting higher truncation errors at 
node points placed near the wall is of primary concern due 
to its effect on the extraction of wall gradients. 

Patankar and Spalding circumvented this dil?iculty by 
matching a Couette flow analysis in the near wall region 
with the finite difference solution away from the wall. 
Although this is undoubtedly satisfactory for most applica- 
tions, the complexity of the concept combined with the need 
to derive new expressions for each class of problems treated 
has resulted in rejection of this feature by many authors 
[3-51. In addition, Patankar and Spalding recommend 
that difference analogues he obtained by integrally averag- 
ing the conservation equation over a control volume 
extending from wi_* to oi+, with an assumed linear 
variation of the dependent variable between adjacent node 


